Evaluating the Integral of sec(θ)/(sec(θ) - tan(θ))
This article focuses on the process of evaluating the integral:
The Problem and Initial Simplifications
To evaluate the integral:
I int frac{sec theta}{sec theta - tan theta} dthetaThe key to simplifying the integrand lies in recognizing the trigonometric identities:
tsec θ 1/cos θ
ttan θ sin θ/cos θ
By substituting these identities, we can rewrite the integrand:
sec theta - tan theta frac{1}{cos theta} - frac{sin theta}{cos theta} frac{1 - sin theta}{cos theta}Further Simplification
Re-substituting the simplified integrand into the integral, we have:
I int frac{sec theta}{frac{1 - sin theta}{cos theta}} dtheta int frac{sec theta cos theta}{1 - sin theta} dtheta int frac{1}{1 - sin theta} dthetaMultiplying by the Conjugate
To simplify further, we use the technique of multiplying the numerator and denominator by the conjugate of the denominator:
frac{1}{1 - sin theta} cdot frac{1 sin theta}{1 sin theta} frac{1 sin theta}{1 - sin^2 theta} frac{1 sin theta}{cos^2 theta}Thus, the integral becomes:
I int frac{1 sin theta}{cos^2 theta} dtheta int sec^2 θ dθ - int frac{sin θ}{cos^2 θ} dθBreaking Down the Integral
We then break down the integral into two simpler parts:
tThe first part is the integral of sec2θ
tThe second part involves the substitution for the product of tanθ and secθ
The Integral of sec2θ
The integral of sec2θ is a standard result:
int sec^2 θ dθ tan θ C_1The Second Integral: tanθsecθ
For the second integral, we use the substitution:
u sec θ, du sec θ tan θ dθThus:
int tan θ sec θ dθ int du u C_2 sec θ C_2Combining Results
Combining both parts, we have:
I tan θ sec θ C, where C C_1 C_2Therefore, the final result for the integral is:
int frac{sec θ}{sec θ - tan θ} dθ tan θ sec θ CConclusion
The integral evaluation of sec(θ)/(sec(θ) - tan(θ)) involves a series of simplifications, clever manipulations of trigonometric identities, and the use of standard integral results.