Proving an Equality Between an Integral and an Infinite Series
In this article, we will prove the equality:
(int_0^1 frac{ln x ln (1 - x^2)}{x^2} , dx sum_{n1}^{infty} frac{1}{n (2n-1)^2})
Step-by-Step Solution
Step 1: Series Expansion of (ln(1 - x^2))
First, we will use the Taylor series expansion of (ln(1 - x^2)) around (x 0):
(ln(1 - x^2) - sum_{m1}^{infty} frac{x^{2m}}{m})
This expansion is valid for (|x| 1).
Step 2: Substituting the Series into the Integral
Substituting the series expansion into the integral, we get:
(int_0^1 frac{ln x ln(1 - x^2)}{x^2} , dx - int_0^1 frac{ln x}{x^2} left( - sum_{m1}^{infty} frac{x^{2m}}{m} right) , dx)
Interchanging the sum and the integral, justified by uniform convergence on ([0, 1]), we obtain:
(- sum_{m1}^{infty} frac{1}{m} int_0^1 frac{ln x x^{2m}}{x^2} , dx - sum_{m1}^{infty} frac{1}{m} int_0^1 ln x x^{2m-2} , dx)
Step 3: Evaluating the Integral
We will evaluate the integral using integration by parts. Let:
(u ln x), so (du frac{1}{x} , dx) (dv x^{2m-2} , dx), so (v frac{x^{2m-1}}{2m-1})Applying integration by parts:
(int ln x x^{2m-2} , dx left[ ln x cdot frac{x^{2m-1}}{2m-1} right]_0^1 - int_0^1 frac{x^{2m-1}}{2m-1} cdot frac{1}{x} , dx)
The boundary term evaluates to (0), leading to:
(- frac{1}{2m-1} int_0^1 x^{2m-2} , dx - frac{1}{(2m-1)^2})
So, we have:
(int_0^1 ln x x^{2m-2} , dx - frac{1}{(2m-1)^2})
Step 4: Substitute Back
Substituting this result back into our sum gives:
(- sum_{m1}^{infty} frac{1}{m} left( - frac{1}{(2m-1)^2} right) sum_{m1}^{infty} frac{1}{m (2m-1)^2})
Conclusion
We have thus shown:
(int_0^1 frac{ln x ln (1 - x^2)}{x^2} , dx sum_{m1}^{infty} frac{1}{m (2m-1)^2})
This confirms the equality:
(int_0^1 frac{ln x ln (1 - x^2)}{x^2} , dx sum_{n1}^{infty} frac{1}{n (2n-1)^2})